Direct Estimation of Inhomogeneous Markov Interval Models of Spike Trains

نویسندگان

  • Daniel K. Wójcik
  • Gabriela Mochol
  • Wit Jakuczun
  • Marek Wypych
  • Wioletta J. Waleszczyk
چکیده

A necessary ingredient for a quantitative theory of neural coding is appropriate "spike kinematics": a precise description of spike trains. While summarizing experiments by complete spike time collections is clearly inefficient and probably unnecessary, the most common probabilistic model used in neurophysiology, the inhomogeneous Poisson process, often seems too crude. Recently a more general model, the inhomogeneous Markov interval model (Berry & Meister, 1998 ; Kass & Ventura, 2001 ), was considered, which takes into account both the current experimental time and the time from the last spike. Several techniques were proposed to estimate the parameters of these models from data. Here we propose a direct method of estimation that is easy to implement, fast, and conceptually simple. The method is illustrated with an analysis of sample data from the cat's superior colliculus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis

Measuring agreement between a statistical model and a spike train data series, that is, evaluating goodness of fit, is crucial for establishing the model's validity prior to using it to make inferences about a particular neural system. Assessing goodness-of-fit is a challenging problem for point process neural spike train models, especially for histogram-based models such as perstimulus time hi...

متن کامل

A Comparison of Descriptive Models of a Single Spike Train by Information-Geometric Measure

In examining spike trains, different models are used to describe their structure. The different models often seem quite similar, but because they are cast in different formalisms, it is often difficult to compare their predictions. Here we use the information-geometric measure, an orthogonal coordinate representation of point processes, to express different models of stochastic point processes ...

متن کامل

Spike Train Probability Models for Stimulus-Driven Leaky Integrate-and-Fire Neurons

Mathematical models of neurons are widely used to improve understanding of neuronal spiking behavior. These models can produce artificial spike trains that resemble actual spike train data in important ways, but they are not very easy to apply to the analysis of spike train data. Instead, statistical methods based on point process models of spike trains provide a wide range of data-analytical t...

متن کامل

Spike-Frequency Adapting Neural Ensembles: Beyond Mean Adaptation and Renewal Theories

We propose a Markov process model for spike-frequency adapting neural ensembles that synthesizes existing mean-adaptation approaches, population density methods, and inhomogeneous renewal theory, resulting in a unified and tractable framework that goes beyond renewal and mean-adaptation theories by accounting for correlations between subsequent interspike intervals. A method for efficiently gen...

متن کامل

Construction and analysis of non-Poisson stimulus-response models of neural spiking activity.

A paradigm for constructing and analyzing non-Poisson stimulus-response models of neural spike train activity is presented. Inhomogeneous gamma (IG) and inverse Gaussian (IIG) probability models are constructed by generalizing the derivation of the inhomogeneous Poisson (IP) model from the exponential probability density. The resultant spike train models have Markov dependence. Quantile-quantil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 21 8  شماره 

صفحات  -

تاریخ انتشار 2009